Harnessing Seeded Geometric Imperfection to Design Cylindrical Shells With Tunable Elastic Postbuckling Behavior
نویسندگان
چکیده
Geometric imperfection, known as a detrimental effect on the buckling load of cylindrical shells, has a new role under the emerging trend of using buckling for smart purposes. Eigenshape-based geometries were designed on the shell surface with the aim of tailoring the postbuckling response. Fourteen seeded geometric imperfection (SGI) cylinders were fabricated using polymer-based 3D printing, and their postbuckling responses were numerically simulated with a general-purpose finite element program. Results on the prototyped SGI cylinders showed a tunable elastic postbuckling response in terms of initial and final stiffness, the maximum load drop from mode switching, and the number of snapbuckling events. A response contour and discrete map is presented to show how the number of waves in the axial and circumferential directions in the seeded eigenshape imperfection can control the elastic postbuckling response. SGI cylinders provide diverse design opportunities for controllable unstable response and are good candidates for use in smart and adaptive materials/structures. [DOI: 10.1115/1.4034827]
منابع مشابه
Structural Optimization and Form-finding of Cylindrical Shells for Targeted Elastic Postbuckling Response
This paper presents a finite element based numerical study on controlling the postbuckling behavior of thin-walled cylindrical shells under axial compression. With the increasing interest of various disciplines for harnessing elastic instabilities in materials and mechanical systems, the postbuckling behavior of thin-walled cylindrical shells may have a new role to design materials and structur...
متن کاملPostbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method
In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...
متن کاملField Study and Evaluation of Buckling Behavior of Cylindrical Steel Tanks with Geometric Imperfections under Uniform External Pressure
Construction and assembling process of shell structures has caused main problems. In these structures, there is no possibility for the integrated construction due to their large shell extent and they are built using a number of welded curved panel parts; hence, some geometrical imperfections emerge. Most of these imperfections are caused by the process of welding, transportation, inappropriate ...
متن کاملBuckling of Cylindrical Steel Shells with Random Imperfections due to Global Shear
This study aims to investigate the effects of geometric imperfections on buckling of thin cylindrical shells due to global shear. To this end, more than 320 finite element models of cylindrical shells with different diameter to thickness ratios were prepared. Random imperfections with different amplitudes were applied to numerical models. The results revealed that global buckling of cylindrical...
متن کاملExperiments on imperfection insensitive axially loaded cylindrical shells
This paper presents an experimental study of imperfection insensitive composite wavy cylindrical shells subject to axial compression. A fabrication technique for making cylindrical shells with intricate shape of cross-sections has been developed. A photogrammetry technique to measure the geometric imperfections has also been developed. The behavior of the wavy shells under axial compression was...
متن کامل